Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(gtr, app(s, x)), app(s, y)) → APP(gtr, x)
APP(app(d, app(s, x)), app(s, y)) → APP(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
APP(app(filter, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(sub, app(s, x)), app(s, y)) → APP(app(sub, x), y)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(filter, p), xs)
APP(app(d, app(s, x)), app(s, y)) → APP(app(sub, y), x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(cons, x), app(app(filter, p), xs))
APP(app(d, app(s, x)), app(s, y)) → APP(app(d, app(s, x)), app(app(sub, y), x))
APP(len, app(app(cons, x), xs)) → APP(s, app(len, xs))
APP(app(d, app(s, x)), app(s, y)) → APP(app(if, app(app(gtr, x), y)), false)
APP(app(filter, p), app(app(cons, x), xs)) → APP(if, app(p, x))
APP(app(d, app(s, x)), app(s, y)) → APP(if, app(app(gtr, x), y))
APP(app(d, app(s, x)), app(s, y)) → APP(app(gtr, x), y)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs)))
APP(app(d, app(s, x)), app(s, y)) → APP(sub, y)
APP(len, app(app(cons, x), xs)) → APP(len, xs)
APP(app(sub, app(s, x)), app(s, y)) → APP(sub, x)
APP(app(d, app(s, x)), app(s, y)) → APP(gtr, x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))
APP(app(gtr, app(s, x)), app(s, y)) → APP(app(gtr, x), y)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(gtr, app(s, x)), app(s, y)) → APP(gtr, x)
APP(app(d, app(s, x)), app(s, y)) → APP(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
APP(app(filter, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(sub, app(s, x)), app(s, y)) → APP(app(sub, x), y)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(filter, p), xs)
APP(app(d, app(s, x)), app(s, y)) → APP(app(sub, y), x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(cons, x), app(app(filter, p), xs))
APP(app(d, app(s, x)), app(s, y)) → APP(app(d, app(s, x)), app(app(sub, y), x))
APP(len, app(app(cons, x), xs)) → APP(s, app(len, xs))
APP(app(d, app(s, x)), app(s, y)) → APP(app(if, app(app(gtr, x), y)), false)
APP(app(filter, p), app(app(cons, x), xs)) → APP(if, app(p, x))
APP(app(d, app(s, x)), app(s, y)) → APP(if, app(app(gtr, x), y))
APP(app(d, app(s, x)), app(s, y)) → APP(app(gtr, x), y)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs)))
APP(app(d, app(s, x)), app(s, y)) → APP(sub, y)
APP(len, app(app(cons, x), xs)) → APP(len, xs)
APP(app(sub, app(s, x)), app(s, y)) → APP(sub, x)
APP(app(d, app(s, x)), app(s, y)) → APP(gtr, x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))
APP(app(gtr, app(s, x)), app(s, y)) → APP(app(gtr, x), y)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 14 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(len, app(app(cons, x), xs)) → APP(len, xs)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(len, app(app(cons, x), xs)) → APP(len, xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (7/2)x_2   
POL(cons) = 1/4   
POL(len) = 0   
POL(app(x1, x2)) = (1/4)x_1 + (7/2)x_2   
The value of delta used in the strict ordering is 7/128.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(gtr, app(s, x)), app(s, y)) → APP(app(gtr, x), y)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(gtr, app(s, x)), app(s, y)) → APP(app(gtr, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (15/4)x_2   
POL(app(x1, x2)) = (1/4)x_1 + (13/4)x_2   
POL(s) = 1/4   
POL(gtr) = 0   
The value of delta used in the strict ordering is 15/64.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(sub, app(s, x)), app(s, y)) → APP(app(sub, x), y)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(sub, app(s, x)), app(s, y)) → APP(app(sub, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_2   
POL(sub) = 0   
POL(app(x1, x2)) = (4)x_1 + (2)x_2   
POL(s) = 4   
The value of delta used in the strict ordering is 64.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(d, app(s, x)), app(s, y)) → APP(app(d, app(s, x)), app(app(sub, y), x))

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(filter, p), xs)

The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(filter, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(filter, p), app(app(cons, x), xs)) → APP(app(filter, p), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (1/2)x_1 + (1/4)x_2   
POL(cons) = 1/4   
POL(app(x1, x2)) = 1/4 + (1/4)x_1 + (4)x_2   
POL(filter) = 5/4   
The value of delta used in the strict ordering is 21/256.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(app(if, true), xs), ys) → xs
app(app(app(if, false), xs), ys) → ys
app(app(sub, x), 0) → x
app(app(sub, app(s, x)), app(s, y)) → app(app(sub, x), y)
app(app(gtr, 0), y) → false
app(app(gtr, app(s, x)), 0) → true
app(app(gtr, app(s, x)), app(s, y)) → app(app(gtr, x), y)
app(app(d, x), 0) → true
app(app(d, app(s, x)), app(s, y)) → app(app(app(if, app(app(gtr, x), y)), false), app(app(d, app(s, x)), app(app(sub, y), x)))
app(len, nil) → 0
app(len, app(app(cons, x), xs)) → app(s, app(len, xs))
app(app(filter, p), nil) → nil
app(app(filter, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(filter, p), xs))), app(app(filter, p), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.